Optimum variable input speed for kinematic performance of Geneva mechanisms using teaching-learning-based optimization algorithm

Author:

Lin WY1,Tsai YH2,Hsiao KM2

Affiliation:

1. Department of Mechanical Engineering, De Lin Institute of Technology, New Taipei City, Taiwan, ROC

2. Department of Mechanical Engineering, National Chiao Tung University, Hsinchu City, Taiwan, ROC

Abstract

An optimum design of variable input speed for the Geneva mechanism is aimed at improving the kinematic performance of the traditional Geneva mechanism by eliminating infinite angular jerks and reducing the peak angular acceleration of the Geneva wheel during the indexing motion. The normalized angular velocity and acceleration of the Geneva wheel corresponding to the normalized time are introduced. A polynomial function of the normalized time is used to describe the normalized angular position of the crank, and therefore, the corresponding polynomial coefficients are considered as the design variables. The optimum design task is very specialized and difficult to solve with some evolutionary and swarm optimization methods because of the extremely large range for the value of the design variable, arising from the utilization of a higher order polynomial for the normalized time parameter with a value between 0 and 1. A new evolutionary algorithm termed teaching-learning-based optimization comprises a teacher phase and a learner phase. In the teacher phase, the entire population can be gradually shifted to a more promising region, which may be very far from the relatively small initial region. The obtained optimal results are compared with those obtained using the length-adjustable deriving link method discussed in the literature. The findings show that the difference in the effectiveness of the variable input speed method and the length-adjustable driving link method for the reduction of the peak angular acceleration of the Geneva wheel is small.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimum synthesis of mechanisms with uncertainties quantification throughout the maximum likelihood estimators and bootstrap confidence intervals;Mechanics Based Design of Structures and Machines;2022-08-11

2. High-capacity stacking apparatus for thermoforming machine – Part I: Synthesis of intermittent mechanisms as stacker driving units;Advances in Mechanical Engineering;2021-08

3. Vision-based control for trajectory tracking of four-bar linkage;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-05-31

4. Experimental kinematic analysis of an intermittent motion planetary mechanism with elliptical gears;Journal of Measurements in Engineering;2020-09-30

5. Scheduling just-in-time part replenishment of the automobile assembly line with unrelated parallel machines;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3