Aerofoil behaviour at high angles of attack and at Reynolds numbers appropriate for small wind turbines

Author:

Du Longhuan1,Berson Arganthaël1,Dominy Robert G1

Affiliation:

1. School of Engineering and Computing Sciences, Durham University, Durham, UK

Abstract

The aerodynamic characteristics of a NACA0018 aerofoil have been investigated experimentally for incidence angles ranging from [Formula: see text] to [Formula: see text] in closed-jet and open-jet wind tunnels with different blockage coefficients at Reynolds numbers from 60,000 to 140,000. The results provide a comprehensive data set for studying the performance of typical, small-scale Darrieus wind turbine blades which mainly operate at relatively low Reynolds number and experience extreme angles of attack, particularly during start-up. Measurements in both very high and very low blockage, open-jet wind tunnels capture a “second-stall” phenomenon at high angles of attack, but this behaviour is not observed in the closed-jet wind tunnel confirming the sensitivity of aerofoil performance at extreme incidence to wind tunnel configuration. Surface flow visualisation suggests that the “second-stall” occurs when the flow separation point near the leading edge of the aerofoil moves from the suction side to the pressure side which leads to a sudden change of wake structure. In the closed-jet wind tunnel, the tunnel walls constrain the wake and prevent the flow from switching from one regime to another. The measured data are also used to demonstrate that established wind tunnel blockage corrections break down under these extreme, post-stall angles of attack.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3