Entropy generation on Casson hybrid nanofluid over a curved stretching sheet with convective boundary condition: Semi-analytical and numerical simulations

Author:

Sakkaravarthi K1,Reddy P Bala Anki1ORCID

Affiliation:

1. Department of Mathematics, S.A.S., Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

Abstract

The present study reports a computational analysis of entropy generation on the MHD flow behavior of two-dimensional Casson hybrid nanofluid over a porous curved stretching sheet in the appearance of thermal radiation. To examine the rheology of the blood we have incorporated Casson fluid model in which comparison is done for both Newtonian and non-Newtonian models. In this investigation, we used the blood as based and Tantalum ( Ta) and Cobalt ( Co) are nanoparticles due to an extensive range of biomedical applications such as an agent to prevent the heat transfer of blood and wounded tissue, treatments of anemia, and treatment of cancer therapeutics. The governing non-linear coupled partial differential equations are altered into non-linear coupled ordinary differential equations by using the similarity variables. The Homotopy Perturbation Method is used to solve the newly renovated equations semi-analytically. The semi-analytical outcomes are validated with numerical outcomes obtained through the shooting method, and they are also compared to available literature as a limiting case. Graphical projections are supplied with the influence of active parameters for velocity, temperature, Bejan number, entropy production, skin friction, and Nusselt number. The velocity profile increases for higher values of curvature parameter, and mixed convection parameter. The temperature profile increases, when increases the thermal radiation and magnetic parameters. Higher values of the nanoparticle’s volume fraction enhance the rate of heat transfer. Compare to the Newtonian fluid model non-Newtonian provide higher heat transfer.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3