An experimental assessment of using waste plastic fuel as an additive in a DI diesel engine running on Jatropha biodiesel blends

Author:

Kumar Rajan1,Misra Manoj Kumar2,Roy Manish Kumar3ORCID

Affiliation:

1. Department of Mechanical Engineering, BIT Sindri, Dhanbad, India

2. Department of chemistry, BIT Sindri, Dhanbad, India

3. Department of Mechanical Engineering, SMIT, East-Sikkim, India

Abstract

The sole objective of the current work is to assess the effects of adding waste plastic fuel to diesel and jatropha biodiesel. In order to test this, seven distinct fuel samples made up of jatropha biodiesel-diesel, WPF-jatropha biodiesel-diesel, and regular diesel as a reference fuel were created using predefined volumetric proportions. After thorough characterization, studies are carried out employing spectroscopic methods such as FTIR, elemental analysis, and GC-MS. Finally, a direct-injection single-cylinder diesel engine underwent performance and emission tests. It has been discovered that adding WPF to biodiesel lowers its density, flash point, and viscosity. When WPF is added to biodiesel blends, the biodiesel’s cold flow properties are improved, and its calorific value and diesel index are raised. According to FTIR analysis of the fuel samples, the WPF mixed biodiesel, biodiesel, and diesel all share certain common functional groups. According to GC-MS examination of the fuel samples, all of the blends contain some aliphatic and aromatic chemicals as well as diglycerides, triglycerides, and ester components. WPF blended fuels exhibit improved thermal efficiency under partial loading situations, according to engine performance tests. It is discovered that the WPF blended fuel has a lower exhaust temperature than biodiesel. Compared to biodiesel and diesel, WPF mixed fuel has higher HC emissions but lower NOx emissions. Thus, it is advantageous to mix waste plastic fuel with biodiesel because doing so lowers NOx emissions while simultaneously raising the calorific value and diesel index of the biodiesel.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3