Experimental and finite element analysis of surface asperity geometry during the running-in phase of rolling contact

Author:

Mohd Yusof Nurul Farhana1ORCID,Mohd Ripin Zaidi1

Affiliation:

1. School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia

Abstract

This paper presents the experimental and finite element analysis of surface asperity geometry during the running-in phase of rolling contact. Previous research efforts typically relied on simulating various shapes of asperity geometry to elucidate rough surface characteristics. However, this approximation did not accurately represent the actual surface asperities. In this study, a rolling contact rig was fabricated, and periodic surface scans were utilized to track the deformation of roller surface asperities. The experimental findings reveal a notable 69% reduction in surface roughness throughout the running-in phase, alongside showcasing the deformation of asperity geometry. Subsequently, a simulation model is developed using data derived from these experiments. Stress analysis conducted on individual and multiple asperities illustrates a decrease in contact stress over time, indicating a transition in contact behavior from plastic to elastic. Furthermore, simulations involving multiple asperities demonstrate an expansion in contact length as roughness diminishes with increasing cycles. Initially, only the highest peaks of asperities make contact, resulting in elevated contact stress. However, as rolling cycles progress, a greater number of asperities come into contact, leading to a more uniform distribution of load. Notably, the more prominent asperities endure significant contact stress and deformation compared to their smaller counterparts.

Funder

Ministry of Higher Education Malaysia

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3