A high-dimension structural reliability method based on active learning Kriging and dimension reduction technique

Author:

Zhao Haodong1,Zhou Changcong1ORCID,Shi Zhuangke1,Li Chen1

Affiliation:

1. Department of Engineering Mechanics, Institute of Aircraft Reliability Engineering, Northwestern Polytechnical University, Xi’an, China

Abstract

For efficiently and accurately estimating the failure probability and the further sensitivity index of the high-dimension structures, a novel AS-AK-MCS method is proposed in this work. This method fully employs the merits of the active subspace-based dimension reduction technique, the active learning (AL) Kriging surrogate model, and the Monte Carlo simulation. In the proposed method, the intractable gradient information needed by the active subspace method is obtained by a crude Kriging model with initial training sample points. In the construction of the crude Kriging model, the proposed trend model selection criterion reduces the man-made error. Then the active subspace method converts the reliability analysis from the original high-dimension space into the low-dimension subspace, which facilities constructing an AL-Kriging model and also avoids the tricky “curse of dimension” problem. The state-of-the-art U learning function is applied as the points adding criterion in the active subspace. In order to demonstrate the effectivity and versatility of the proposed method, three representative examples including the linear/nonlinear and the explicit/implicit performance functions are studied for estimating the failure probability and the failure probability-based sensitivity index. Finally, the proposed method is applied to the reliability and sensitivity analysis of a composite radome structure.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3