Three-dimensional numerical modeling of flow upstream of a symmetric streamlined body mounted over a flat plate with tip gap

Author:

Khan Ovais U1ORCID,Arshed Ghulam23,Khan Mohammad Javed4ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Texas A&M University, Kingsville, TX, USA

2. Department of Mechanical Engineering, Unitech, Lae, Morobe, Papua New Guinea

3. PN Engineering College, NUST, Karachi, Pakistan

4. Department of Aerospace Science Engineering, Tuskegee University, Tuskegee, AL, USA

Abstract

In this research activity numerical simulations are carried out to investigate the flow field upstream of a symmetric streamlined body mounted perpendicular to a flat plate with and without clearance gap between the tip of the streamlined body and the flat plate with laminar boundary layer. The developed numerical model successfully predicted the three-dimensional horseshoe vortex system upstream of the streamlined body with and without the tip gap. The resulting vortex system for the configuration with tip gap contains multiple vortices with characteristics similar to that of end-wall-flows of surface-mounted obstacles. The effects of varying tip gap clearance for various values of free stream Reynolds number are also investigated. It was found that the introduction of a gap between the streamlined body tip and flat surface caused shifting of the vortex structure system in the upstream direction. Moreover, it is observed that the free stream Reynolds number and the tip gap between the streamlined body and the flat plate substantially influences the unsteady character of the flow field and the vortex system structure. Results obtained from the numerical simulations are compared with experimental measurements of a blunt body configuration and have been found in good agreement.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3