Affiliation:
1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
Abstract
Modeling of fractionally damped nanostructure is extremely important because of its inherent ability to capture the memory and hereditary effect of several viscoelastic materials extensively used in nanotechnology. The nonlinear free vibration characteristics of a simply-supported nanobeam with fractional-order derivative damping via nonlocal continuum theory are studied in this article. Using Newton’s second law, the equation of motion for the nanobeam embedded in a viscoelastic matrix is derived. The Galerkin method is employed to transform the integro-partial differential equation of motion into a Duffing-type nonlinear ordinary differential equation. The fractional-order damping term is replaced by a combination of linear damping and linear stiffness term. The approximate analytical solution obtained via method of averaging is found to be in good agreement with solution obtained through numerical scheme. Detailed study of system parameters reveals that the fractional-order derivative damping has significant influence on the time response and effective natural frequency of the nanobeam.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献