Fabrication techniques of polymeric nanocomposites: A comprehensive review

Author:

Kamal Abdallah1,Ashmawy Mayar1,S Shanmugan2ORCID,Algazzar Almoataz M3,Elsheikh Ammar H1ORCID

Affiliation:

1. Department of Production Engineering and Mechanical Design, Tanta University, Tanta, Egypt

2. Research Centre for Solar Energy, Department of Physics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India

3. Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt

Abstract

Nanotechnology is the key solution for many human problems such as energy conversion, water treatment, and material science. In composite materials, nanoparticles are dispersed in a matrix material such as metals, ceramics, or polymers to enhance their mechanical and thermophysical properties. Polymer nanocomposite materials found their applications in vital fields such as the automotive and aircraft industries. There are many techniques adopted to produce polymer nanocomposites, and they are summarized and discussed according to our best known in this paper. All techniques aim to produce nanocomposite materials with uniform dispersion and without aggregations. Melt-mixing, mixing, in-situ polymerization, electrospinning, and selective laser sintering techniques are the most commonly used techniques to produce polymer nanocomposite. The utilization of water, atomic layer deposition, and plasma-assisted mechanochemistry are found to eradicate the issue of nanoparticles aggregation for melt-mixing technique. Also, sonication with high frequencies plays the same role for mixing techniques. In-situ polymerization provides fabrication of nanocomposites that are thermodynamically stable. Electrospinning represents an effective method which is suitable for producing porous structures. In addition, fabrication of nanocomposites via selective laser sintering has obvious benefits to overcome the problem of aggregation. The working principles of each technique, including the advantages and disadvantages, are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3