Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut, India
Abstract
This article analyses the adsorbent bed in an adsorption refrigeration system. After establishing the similarity to the compression process in a vapour compression system, thermodynamic analysis of the adsorbent bed in vapour adsorption system is carried out for evaluating the performance index, exergy destruction, uptake efficiency and exergetic efficiency of the adsorbent bed in a typical solar adsorption refrigeration system. This article also presents isothermal and isobaric modelling of methanol on highly porous activated carbon. The experimental data have been fitted with Dubinin–Astakhov and Dubinin–Radushkevitch equations. The isosteric heat of adsorption is also extracted from the present experimental data. The use of artificial neural network model is proposed to predict the performance of the adsorbent bed used. The back propagation algorithm with three different variants namely scaled conjugate gradient, Pola–Ribiere conjugate gradient and Levenberg–Marquardt and logistic sigmoid transfer function are used, so that the best approach could be found. After training, it is found that Levenberg–Marquardt algorithm with 14 neurons is the most suitable for modelling, the adsorbent bed in a solar adsorption refrigeration system. The artificial neural network predictions of performance parameters agrees well with experimental values with correlation coefficient ( R2) values close to 1 and maximum percentage of error less than 5%. The root mean square and covariance values are also found to be within the acceptable limits.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献