Experimental and optimization studies of friction stir processed Cu-TiB2 surface composites

Author:

Nagunoori Ramakrishna12,Lam Suvarna Raju3ORCID,Gurram Mallaiah2,Borigorla Venu4ORCID,Kaki Venkata Rao1

Affiliation:

1. Department of Mechanical Engineering, Vignan’s Foundation for Science Technology & Research (Deemed to be University), Guntur, Andhra Pradesh, India

2. Department of Mechanical Engineering, Kamala Institute of Technology & Science, Singapur, Telangana, India

3. Department of Mechanical Engineering Education, National Institute of Technical Teachers’ Training and Research (NITTTR), Bhopal, Madhya Pradesh, India

4. Department of Mechanical Engineering, Vignan’s Lara Institute of Technology & Science, Vadlamudi, Andhra Pradesh, India

Abstract

The present study aims to fabricate different Copper surface composites (Cu-SCs) such as Copper-Silicon Carbide (Cu-SiC), Copper-Boron Carbide (Cu-B4C), Copper-Titanium Diboride (Cu-TiB2) with enhanced mechanical properties using friction stir processing. The Cu-SCs were fabricated at different levels of tool rotational speed (TRS), traverse speed (TS), and Vol. % of micro-sized Boron Carbide (B4C), Silicon Carbide (SiC), and Titanium Diboride (TiB2) reinforcements using blind hole method. The mechanical characteristics such as ultimate tensile strength (UTS), yield strength (YS), percentage of elongation (%EL), impact toughness (IT), and microhardness (H) of the Cu-SCs were evaluated and analyzed. In the next stage, the process parameters were optimized using a graph theory algorithm and utility concept and the TRS, and TS were 1120 rev/min, and 40 mm/min respectively. The Cu-SCs fabricated by using taper threaded cylindrical tool pin profile at four Vol.% of TiB2 possess enhanced the mechanical characteristics such as UTS, YS, % EL, IT, and H up to 282.07 MPa, 197.76 MPa, 12.96%, 16.67 J, and 168.6 HV. This was happened due to the increased recrystallization temperature, the pining effect, and restricting the grain boundary sliding. The microstructure in the stir zone of Cu-SCs fabricated with 4 Vol. % of SiC, 4 Vol. % of B4C, and 4 Vol. % of TiB2 particles exhibit fine grains. This is attributed to uniform distribution of the particles in the copper surface composites. The mechanical characteristics were also correlated with microstructures and fracture features.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3