Dynamic modeling and simulation of impact in hydraulic cylinders

Author:

Gad Osama1ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, Khaldia, Kuwait

Abstract

In this paper, modeling impact dynamics of a piston and its cylinder body in a hydraulic cylinder is investigated. The studied system consists of two identical hydraulic cylinders controlled by a pressure sequence valve. The impact is assumed as a linear one dimensional and purely translational viscoelastic impact of rigid bodies. Four impact models, the Kelvin-Voigt, the Maxwell, the standard-solid, and the Hunt-Crossley, are considered. Measurements of the transient variations of the cylinders operating pressures and both pistons strokes, at different loading conditions, are conducted. A comprehensive dynamic model of the studied system, considering the four models, is deduced. The Kelvin-Voigt model produced tensile forces by the end of the contact period and it resulted in discontinuities in the contact force during its steady state period. Both results are physically impossible in rigid bodies impacting. In the Maxwell model, large amount of discontinuities appeared in the contact force, which causes the piston to make an infinite number of rebounds during the contact period. In the standard-solid model, the discontinuities in the contact force were found to be much less than those of the Maxwell model. As a result, when the impact occurs, the cylinder pressure gets an overshoot accompanied with large oscillations when the Maxwell model is applied, however, these oscillations do not approximately appear when the standard-solid model is applied. The simulation results showed also that the Hunt-Crossley nonlinear model presented very high penetration depth, which is certainly unrealistic in rigid bodies impacting. The validation of the proposed dynamic models showed that the standard-solid is the most suitable model that may represent the impact in the studied cylinders.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on a nonlinear dynamic characteristic of the positive flow pump in its pilot hydraulic cylinder;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-08-28

2. Nonlinear Dynamics of Vibro-Impacting Indenter;Applied Sciences;2023-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3