Inverse thermal modeling and experimental validation for breast tumor detection by using highly personalized surface thermal patterns and geometry of the breast

Author:

Mukhmetov O1,Mashekova A1,Zhao Y1ORCID,Ng EYK2,Midlenko A3,Fok S1,Teh S.L1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan

2. School of Mechanical and Production Engineering, Nanyang Technological University, Singapore, Singapore

3. Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan

Abstract

Infrared (IR) Thermography is currently a supplementary technique for breast cancer diagnosis. There have been studies using IR thermography and numerical modeling in an attempt to detect tumor inside the breast. Most of these studies focused on either the “forward modeling” problem or only used idealized or population-averaged patients’ data, whereas identification of the tumor inside the breast based on the thermal pattern is an “inverse modeling” problem dependent on personalized information of the patient. Inverse modeling is based on the idea that the surface thermal pattern of the breast can be used to determine the tumor features based on physical and physiological principles. The current study aims to develop a well-validated inverse thermal modeling framework that could be used to determine the depth and size of tumor inside a breast based on personalized patients’ breast data, such as thermogram and 3D geometry using efficient design optimization techniques and Finite Element Modeling (FEM) to support the process. The numerical modeling was validated by the experiments, conducted using artificial breasts. Results show that although DIRECT Optimization method can be employed to find the depth and size of the tumor with good accuracy, the technique can be very time consuming. On the other hand, Response Surface Optimization method is also able to find the depth and size of the tumor with less accuracy but faster when compared with DIRECT Optimization. The last method tested, Nelder-Mead method, failed to detect the tumor. The study concludes that Response Surface Optimization method should be used first, and after the range of parameters are found, the DIRECT optimization method can be applied for more accurate results. However the GA method was found to be the only viable and efficient design optimization method for reverse modeling when blood perfusion was adopted in the breast model and many parameters were searched for with patient specific data input for breast tumor diagnosis.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3