Coordinated control for path-following of an autonomous four in-wheel motor drive electric vehicle

Author:

Barari Ali1ORCID,Saraygord Afshari Sajad1,Liang Xihui1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada

Abstract

Coordination of Active Front Steering (AFS) and Direct Yaw Moment Control (DYC) has been widely used for non-autonomous vehicle lateral stability control. Recently, some researchers used it (AFS/DYC) for path-following of autonomous vehicles. However, current controllers are not robust enough with respect to uncertainties and different road conditions to guarantee lateral stability of Autonomous Four In-wheel Motor Drive Electric Vehicles. Thus, a coordinated control is proposed to address this issue. In this paper, a two-layer hierarchical control strategy is utilized. In the upper-layer, a self-tunable super-twisting sliding mode control is utilized to deal with parametric uncertainties, and a Model Predictive Control (MPC) is used in order to allocate the control action to each AFS and DYC. Parametric uncertainties of tires’ cornering stiffness, vehicle mass and moment of inertia are considered. Simulations with different road conditions for path-following scenario have been conducted in MATLAB/Simulink. An autonomous vehicle equipped with Four In-wheel Motor and two degrees of freedom vehicle dynamics model is used in this study. In the end, the performance of the proposed controller is compared with the MPC controller. Simulation results reveal that the proposed controller provides better path-following in comparison with the MPC controller.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3