Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field

Author:

Karami Behrouz1ORCID,Shahsavari Davood1ORCID,Karami Moein2,Li Li3

Affiliation:

1. Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

2. Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3. State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract

Flexural and longitudinal wave behaviors of nanobeams made of nanoporous-graded materials while surrounded by Winkler-Pasternak foundation, subjected to the longitudinal magnetic field and exposed to the hygrothermal environment are studied analytically. To this end, the governing equation derived by Euler–Bernoulli beam theory in conjunction with the nonlocal strain gradient theory is defined by employing Hamilton’s principle. By adopting an analytic model, the flexural and longitudinal dispersion relations between phase velocity and wave number are derived. The reliability of the present method is confirmed by comparing the obtained results with those stored in the literature. Finally, the effects of the power-law index, porosity volume fraction, nonlocal and material characteristic parameters, uniform temperature and moisture rise, elastic foundation parameters, magnetic field intensity, and wave number are also investigated in detail. It is found that the small-scale parameters are more influential in higher wave numbers where the wavelength is close to the length scale of nanostructures. However, foundation parameters, porosity volume fraction, and longitudinal magnetic field are more influential in lower wave numbers.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3