Robust geometric accuracy allocation of machine tools to minimize manufacturing costs and quality loss

Author:

Cheng Qiang1,Zhao Hongwei1,Liu Zhifeng1,Zhang Cui1,Gu Peihua2

Affiliation:

1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China

2. Department of Mechatronics Engineering, Shantou University, Shantou, Guangdong, China

Abstract

With increasing demands of machining accuracy, designing of machine tools for satisfactory performance using cost-effective geometric accuracy configurations is becoming a complex problem to the machine tool manufacturers. In this paper, a novel robust accuracy allocation method is proposed for multi-axis machine tools based on multi-objective quality and cost trade-offs. To model the volumetric accuracy of machine tool based on geometric errors, the multi-body system theory was introduced. A manufacturing cost model for the machine tool components with a significant effect on geometric errors was established based on the machining features. The quality loss of the machine tool was also integrated into a single optimization objective. After identifying the relationship between the accuracy grade parameters of the feeding components and the geometric errors, the maximum in the Euclidean norm of all the accuracy parameters was defined as another optimization objective. The robust accuracy allocation was performed using Isight software and the Non-Dominated Sorting Genetic Algorithm-II built in the MATLAB. The optimization results for a four-axis horizontal machining center showed that the proposed method can realize the optimization of geometric accuracy and can determine the optimal accuracy grade of the feeding components satisfying the machining accuracy requirements.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3