Process improvement in Zamak injection machines for automotive component fabrication

Author:

Pereira José Luís Torres Alves1,Campilho Raul Duarte Salgueiral Gomes12ORCID,Silva Francisco José Gomes da12ORCID

Affiliation:

1. CIDEM, ISEP - School of Engineering, Polytechnic of Porto, Porto, Portugal

2. INEGI – Pólo FEUP, Porto, Portugal

Abstract

Die casting processes are nowadays widely used in the industry and differentiate from metal casting from the high-speed and pressure applied to inject the metal into the cavity. Due to this procedure, the produced parts manage to acquire better mechanical characteristics, dimensional precision, and smaller roughness. Due to the automation possibility, and mould coating possibilities, the process becomes cost competitive at significant production rates. However, to assure proper functioning and extended life of die casting equipment, it is necessary to continuously control the process variables, undertake maintenance, and implement process improvement actions to the production lines. The objective of the present work is to improve the efficiency of a Zamak die cast injection line for cable terminals used in Bowden or control cables for the automotive industry. By reducing wear and number of failures of standard components in this production line, and thus by diminishing the stoppage and replacement costs, it becomes possible to improve the current process. By applying specific improvements to the injection subset, heating element, and pump, including geometry modifications to the injection elements and respective interactions, heat treatments, higher power resistor, and groove/ring system in the pumps’ piston, a significant process improvement was accomplished by the proposed and tested modifications, leading to reduction of failures and operational costs, and consequently higher competitiveness of the process.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3