Kinematics of wings from Caudipteryx to modern birds

Author:

Talori Yaser Saffar1,Zhao Jing-Shan1ORCID,O'Connor Jingmai K2

Affiliation:

1. Department of Mechanical Engineering, Tsinghua University, Beijing, China

2. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China

Abstract

This study seeks to better quantify the parameters that drove the evolution of flight from non-volant winged dinosaurs to modern birds. In order to explore this issue, we used fossil data to model the feathered forelimbs of Caudipteryx, the most basal non-volant maniraptoran dinosaur with elongated pennaceous feathers that could be described as forming proto-wings. In order to quantify the limiting flight factors, we created three hypothetical wing profiles for Caudipteryx with incrementally larger wingspans. We compared them with what revealed through fossils in wing morphology. These four models were analyzed under varying air speed, wing beat amplitude, and wing beat frequency to determine lift, thrust potential, and metabolic requirements. We tested these models using theoretical equations in order to mathematically describe the evolutionary changes observed during the evolution of modern birds from a winged terrestrial theropod like Caudipteryx. Caudipteryx could not fly, but this research indicates that with a large enough wing span, Caudipteryx-like animal could have flown. The results of these analyses mathematically confirm that during the evolution of energetically efficient powered flight in derived maniraptorans, body weight had to decrease and wing area/wing profile needed to increase together with the flapping angle and surface area for the attachment of the flight muscles. This study quantifies the morphological changes that we observe in the pennaraptoran fossil record in the overall decrease in body size in paravians, the increased wing surface area in Archaeopteryx relative to Caudipteryx, and changes observed in the morphology of the thoracic girdle, namely, the orientation of the glenoid and the enlargement of the sternum.

Funder

National Natural Science Foundation of China

National Major Science and Technology

Tsinghua University

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3