Design and experimental validation of a cam-based constant-force compression mechanism with friction considered

Author:

Li Ming1ORCID,Cheng Wei1,Xie Ruili1

Affiliation:

1. Institute of Solid Mechanics, Beihang University, Beijing, China

Abstract

Due to the quasi-zero-stiffness and overload protection characteristics, constant-force mechanisms can be widely used in nonlinear vibration control, high-efficiency shock isolation, and other engineering fields. As a preparatory work for the further applications, this paper presents a cam-based constant-force compression mechanism and validates the quasi-static characteristics experimentally. By employing the friction considered profile identification method to design the cam and through the interaction between the cam and spring-sliders, the constant-force compression mechanism can passively output the desired constant force over a sufficiently large displacement. The design theory is firstly introduced in detail. Through establishing and solving the differential relationship between the lateral elastic force and vertical constant force, the constant-force compression mechanism under various frictional conditions can be designed. Then, constant-force compression mechanism prototypes corresponding to sliding and rolling friction are designed, fabricated and tested respectively. The results show that both the prototypes have the satisfactory characteristics as with the design requirements. Moreover, the relative generality and stronger engineering applicability of the proposed friction considered profile identification method are proved since it can not only cover the frictionless (micro-friction) cases, but keep the constant-force behavior of the constant-force compression mechanism under the nonignorable friction conditions. Therefore, compared with the existing cam-roller constant-force mechanisms that must ensure the ignoring micro-friction demand, the presented constant-force compression mechanism taking friction into consideration has important engineering significance since it can reduce this machining requirement.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3