HVAC multivariable system modelling and control

Author:

Touqan Basim1,Abdul-Ameer Alaa1,Salameh Muna2

Affiliation:

1. The British University in Dubai, Dubai, United Arab Emirates

2. Ajman University, Ajman, United Arab Emirates

Abstract

Heating, Ventilation and Air Conditioning (HVAC) is a multivariable process where any alteration with one system input affects most or all of the system’s outputs simultaneously. Owing to its comprehensiveness, a readily derived multivariable HVAC mathematical model is selected for this work, mainly a hybrid distributed-lumped parameters model. As the transfer function matrix was not established in the selected HVAC model, it was exclusively developed in this study, using the time domain graphical responses of the chosen model. Based on the developed transfer function matrix, a conceptual two-step approach was followed to control HVAC model performance. The first was decoupling the interactions that affect all the system outputs, and the second was designing proper PID controllers for each decoupled loop similar to those used for single input single output (SISO) systems. A direct Nyquist Array (DNA) multivariable control strategy was used for this purpose and successfully decoupled the HVAC system into three separate (SISO) loops. Three PID controllers afterwards were applied for each decoupled loop. The results showed quite decoupled system outputs with a minor coupling percentage so that any change in a system input only affected the corresponding system output. The output responses are also underdamped with almost zero steady-state error confirming the effectiveness of the selected PID parameters. The values of steady-state responses are obtained in (10–15) s compared with (200–600) s of open-loop response time. However, various overshoot percentages in the responses are encountered but are relatively small, with a short settling time, so they don’t affect the thermal comfort of the ventilated volume. System stability using the Nyquist criterion has also been examined and found to satisfy the criterion. The multivariable DNA control technique and the SISO closed-loop PID controllers have shown the capability to suppress external disturbances and restore the system to its original functional steady-state values.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3