Feedforward model-inverse position control of three-stage servo-valve using zero magnitude error tracking control

Author:

Lee Kyeong Ha1ORCID,Baek Seung Guk1,Choi Hyouk Ryeol1,Moon Hyungpil1,Ji Sang-Hoon2,Koo Ja Choon1

Affiliation:

1. School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea

2. Robot Convergence Research Center, KITECH, Ansan, South Korea

Abstract

Three-stage servo-valves are popularly used in hydraulic systems that require large flow rate and high pressure. For a proper control of flow direction and flow rate fed into a hydraulic actuator, securing a proper position control bandwidth is a critical task for the servo-valve. In this paper, a set of popular control methods are systematically studied and a control method is selected. It is proven that the feedforward model-inverse control is the most effective method in terms of the control bandwidth. In the present work, the feedforward closed-loop architecture is adopted and the closed-loop system is estimated in a linear discrete-time transfer function by recursive least squares method. On recognizing a nonminimum phase zero problem, this work implements the zero magnitude error tracking control, an approximate model-inverse technique, in order to overcome the problem. As a result, the effectiveness of the proposed feedforward model-inverse position control strategy is verified.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3