Effect of austenitic stainless steel weld clad layers on conduction heat transfer across the walls of pressure vessels

Author:

Sowrirajan M1,Vijayan S2,Arulraj M.3ORCID,Babu N Vinoth4

Affiliation:

1. Department of Mechanical Engineering, Coimbatore Institute of Engineering and Technology, Coimbatore, India

2. Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, India

3. Department of Mechanical Engineering, Sri Krishna Polytechnic College, Coimbatore, India

4. Department of Mechanical Engineering, Rajalakshmi College of Engineering, Chennai, India

Abstract

Cladding austenitic stainless steels are popular nowadays in pressure vessels to enhance surface qualities. In this work, austenitic stainless-steel clad layers deposited by flux cored arc welding process on structural steel plates used in boiler construction are investigated in the direction of heat energy conservation. This study is vital, as the low thermal conductivity of austenitic stainless-steel clad layer is capable of reducing heat transfer across walls of pressure vessels. Heat transfer studies were performed using theoretical approach, computational simulations and experimental approach. Results of these studies exhibit a heat conservation of 10.6% owing to the stainless-steel clad layers with optimum clad thickness. The results of theoretical and computational method are having good agreement with the experimental results. These dual-benefit findings of the present work could be supportive to impart corrosion resistance and energy conservation, thereby, in energy efficient design of the thermal equipment.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3