A study of optimization for vibration performance and electromagnetic force of the bone conduction speaker actuator asymmetry

Author:

Lee Jai Hyuk1,Ko Dong Shin1,Kwon Sang Youp1,Kim Jae Yong2,Hur Deog Jae1

Affiliation:

1. Institute for Advanced Engineering, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea

2. Yeil Electronics, Incheon, Republic of Korea

Abstract

This study derives an optimal design of electromagnetic force, verifies the analysis of the optimum, and runs the vibration test to consider various properties of the optimal design in order to optimize the performance of the bone conduction speakers used in Smart Glasses, one of smart wearable devices. For performance factors that affect the electromagnetism of actuator in a bone conduction speaker which holds a magnetic structure, the diaphragm height, yoke pole height, magnet height, magnet and plate width, and coil turn number were selected. To analyze the properties of the performance factors, responsive factors needed to be classified first using fractional factorial design and full factorial design was used for influence analysis. The F-test was done as the means to conduct the valence test to show the independence and reciprocal action for selected performance factors, and it concluded that three independence factors were valid. Based on the valid performance factors, a regression equation to predict its performance was deducted and using the equation, an optimal design to maximize the electromagnetic force performance per component. To verify the characteristics of the optimal model, the finite element method (FEM) was used for analysis. Through electromagnetic analysis, magnetic flux density was obtained, and the particular information along with current and coil length contributed to deriving 0.052 N of electromagnetic force. After completing the frequency response analysis based on the electromagnetic force, it resulted in the 0.0772 mm of displacement at 590.12 Hz of resonant frequency. A sample model was fabricated, followed by vibration testing, after optimal design and analytical verification. Hence, it is verified that the optimal design method and the credibility of the analysis of this study is deemed very high. Furthermore, utilizing this mechanism would inspect the effect of the design parameter performance and increase the credibility and efficiency of a design.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3