Biodiesel yield enhancement through optimizing process parameters with assistance of solar energy—Taguchi and response surface methodology application

Author:

Singh Yashvir1ORCID,Upadhyay Avani Kumar2,Singh Nishant Kumar3ORCID,Sharma Abhishek4,Singla Amneesh2,Kumar Niraj5,Singh Vineet5

Affiliation:

1. Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, India

2. Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, India

3. Department of Mechanical Engineering, Hindustan College of Science and Technology, Mathura, India

4. Department of Mechanical Engineering, GL Bajaj Institute of Technology and Management, Greater Noida, India

5. Department of Mechanical Engineering, FET, MJP Rohilkhand University, Bareilly, India

Abstract

In today’s scenario, biodiesel is one of the best alternatives to diesel for application as an eco-friendly product. In this work, jojoba oil is transesterified using solar energy for heating purposes. A solar parabolic trough collector having 6.4 m2 and 89% reflectivity is used to concentrate solar rays on a sealed container containing jojoba oil and catalyst-alcohol mixture, placed at the focus of the dish. The performance parameters like molar ratio (MR), reaction time (RT), and catalyst concentration (CC) are optimized. The result showed the highest yield of 89.67% at the optimum condition of molar ratio 9:1, reaction time 120 min, and catalyst concentration 0.8 wt.%. The highest contribution of 55.13% is measured for the molar ratio, followed by reaction time and catalyst concentration. Later, the interaction between MR, RT, and CC is established by response surface/contour plots; and their effects on biodiesel yield are discussed. Subsequently, the various physicochemical properties of raw jojoba oil and jojoba oil methyl ester are also measured and discussed as per ASTM standards. The unsaturated acid content in the biodiesel is also measured by gas chromatography. Hence, the blends of linseed oil with diesel fuel can be used in the IC engines with little or no modifications in engine parameters. Therefore, the use of solar energy could effectively reduce the use of electricity to cut down the processing cost in biodiesel production. Also, the methods should be established for methanol recovery from glycerine.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RETRACTION NOTICE: Biodiesel yield enhancement through optimizing process parameters with assistance of solar energy—Taguchi and response surface methodology application;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3