Configuration analysis of a reconfigurable Rubik's snake robot

Author:

Liu Jinguo12,Zhang Xin123ORCID,Zhang Ketao4,Dai Jian S4,Li Shujun5,Sun Qi5

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China

3. University of Chinese Academy of Sciences, Beijing, China

4. King’s College London, University of London, London, UK

5. lege of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

Versatility and adaptability are the most prominent advantages of reconfigurable modular robotic systems. Unlike integrated robotic systems, reconfigurable modular robots can be rearranged to adapt to unpredictable environments. This paper presents a novel reconfigurable modular robot inspired by the Rubik's snake toy. For this reconfigurable Rubik's snake robot, the special feature is that it can work as not only a mechanism but also as a reconfigurable structure. In this paper, the configuration analysis is the core content. The concept of valid configurations is proposed to describe valid, controllable, and non-interference configurations. The configuration analysis theories are introduced in accordance with the configuration representation, the isomorphism analysis, the interference analysis, and the motion sequence analysis. Here, the configuration representation is proposed to define the position and orientation of two modules by using the adjacency matrix and the binary digital code, respectively. The equivalent digital code and the configuration ring are used to distinguish the same or symmetric configurations for the open and closed isomorphism configurations, respectively. Meanwhile, a case study is conducted to verify the effectiveness of the isomorphism analysis. Furthermore, the working space interference method is introduced to detect the interference issue in the process of forming target configurations. To accomplish a target configuration properly, the motion sequence matrix is defined to describe the motion sequence for achieving a target configuration. Finally, an experiment on the configuration transformation is demonstrated to verify the rationality and correctness of the theories of configuration analysis.

Funder

Key Research Program of the Chinese Academy of Sciences

State Key Laboratory of Robotics of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective trajectory planning and implementation of a metamorphic palletizing robot;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-26

2. Torus knot designs using a Rubik’s snake;International Robotics & Automation Journal;2024-05-27

3. Shortest paths of Rubik’s snake composite knots with 9 crossings;International Robotics & Automation Journal;2024-03-08

4. Construction and transformation method of 3D models based on the chain-type modular structure;Complex & Intelligent Systems;2024-01-10

5. Research on the Type Synthesis of a Regular Hexagonal Prism Rubik’s Cube Mechanism;Machines;2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3