Impact of gap-ratios on buoyancy-assisted mixed convection flow and heat transfer in unconfined framework with two side-by-side cylinders

Author:

Sanyal Aniruddha1ORCID,Dhiman Amit2ORCID

Affiliation:

1. Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India

2. Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India

Abstract

An analysis has been carried out to understand the consequences of side-by-side gap-ratio on thermal buoyancy-assisted two-dimensional flow past a pair of heated circular cylinders for a dominant viscous flow field. This is implemented through studies at Reynolds number ( Re) ranging from 5 to 40, Prandtl number ( Pr) 0.7, gap-ratio ( T/D) 1.5 to 4 and Richardson number ( Ri) 0 to 1. An ANSYS-based incompressible flow solver is used with Boussinesq approximation to account for density variations in the momentum equation. One can realize features like the steady-separated and steady-unseparated flow on varying flow and thermal parameters. Unlike streamlines, non-interacting isotherms are non-existent in the current numerical framework. The influence of gap-ratio on enhancement in Nusselt number ( Nu) is the best realized at T/D = 1.5 and buoyancy-aided effects play a dominant role for enhancement in Nu at diffusion and/or viscous-dominant conditions occurring at Re = 5. Correlations are developed to quantify the impact of T/D, Re, and Richardson number Ri on Nu. For the first time, Nu’s correlation based on varying side-by-side gap-ratio has been stated in a single expression. Finally, a comparison for the heat transfer enhancement/reduction in Nu under a similar numerical framework is provided with cases of high-Pr flow and/or different relatable flow arrangements for circular and square cylinders.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3