Dynamic characteristics analysis and experimental of differential dual drive servo feed system

Author:

Yu Hanwen1ORCID,Zhang Laigang2,Wang Chong2,Feng Xianying3

Affiliation:

1. School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan, China

2. School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng, China

3. School of Mechanical Engineering, Shandong University, Jinan, China

Abstract

This paper presents the design for a new differential-dual-drive low-speed micro-feed mechanism. The ‘nut rotary ball screw pair’ is the main driving component of the mechanism. The screw and nut are each driven by a servo motor and these motors rotate in the same direction at a similar speed. The nonlinear factors such as friction and backlash can lead to unstable behaviours such as stick-slip and oscillation of the feed system. We use the Euler–Bernoulli beam elements, which have axial and torsional degrees of freedom, to describe the axial and torsional vibration of the ball screw, and use the spring-lumped parameter method to analyse other components of the feed system. An electromechanical coupling dynamic model with nonlinear factors of friction and clearance is established. Through simulation analysis and experiment, the difference in response of single-drive and differential-dual-drive systems under the influence of friction and clearance is studied. The results show that the nonlinear factors of friction and clearance have an influence on the feed speed of single-drive and differential-dual-drive system, but the low-speed micro-feed performance of the differential-dual-drive system is evidently better than that of the single-drive system. In the experiment, under the condition of screw single drive and differential dual drive, the critical crawling velocities of the table are measured. The experimental results are consistent with the simulation results, which verifies that the established models are reasonable. This lays a foundation for the design and research of the controller.

Funder

Natural Science Foundation of Shandong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3