An improved adaptive stochastic resonance method for improving the efficiency of bearing faults diagnosis

Author:

Huang Dawen12,Yang Jianhua123,Zhang Jingling1,Liu Houguang1

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China

2. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, China

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

The general scale transformation (GST) method is used in the bistable system to deal with the weak high-frequency signal submerged into the strong noisy background. Then, an adaptive stochastic resonance (ASR) method with the GST is put forward and realized by the quantum particle swarm optimization (QPSO) algorithm. Through the bearing fault simulation signal, the ASR method with the GST is compared with the normalized scale transformation (NST) stochastic resonance (SR). The results show that the efficiency of the GST method is higher than the NST in recognizing bearing fault feature information. In order to simulate the actual engineering environment, both the adaptive GST and the NST methods are implemented to deal with the same experimental signal, respectively. The signal-to-noise ratio (SNR) of the output is obviously improved by the GST method. Specifically, the efficiency is improved greatly to extract the weak high-frequency bearing fault feature information. Moreover, under different noise intensities, although the SNR is decreased versus the increase of the noise intensity, the ASR method with the GST is still better than the traditional NST SR. The proposed GST method and the related results might have referenced value in the problem of weak high-frequency feature extraction in engineering fields.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3