A time and ensemble equivalent linearization method for nonlinear systems under combined harmonic and random excitation

Author:

Hickey John12ORCID,Butlin Tore2,Langley Robin2,Onozato Naoki23

Affiliation:

1. Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, College Green, Dublin, Ireland

2. Department of Engineering, University of Cambridge, Cambridge, UK

3. Mitsubishi Heavy Industries Europe Ltd, Uxbridge, UK

Abstract

An Equivalent Linearization technique, termed an Equivalent Linearization Time and Ensemble Expectation (EL-TEE) approach, is used to develop an alternative method for estimating the response of a nonlinear oscillator to a combination of deterministic harmonic and random white noise excitation. The approach is based on applying equivalent linearization and averaging over the time period of one harmonic excitation cycle. This gives a set of coupled nonlinear equations that can be solved for the response averaged over time and across the ensemble. The primary advantages of the proposed method are its computational speed, ability to return physically meaningful linearization matrices and that it can be applied to a wide variety of nonlinearities. The method is applied to three example test systems: the well-known single degree of freedom Duffing oscillator; a single degree of freedom system with a displacement constraint imposing a discontinuous nonlinearity; and a multi degree of freedom oscillator with a localized polynomial nonlinearity that has also been examined experimentally. It is shown that the response predicted matches well with Monte Carlo results from direct time integration at a fraction of the computational cost, and the method is capable of reproducing key results observed experimentally.

Funder

Mitsubishi Heavy Industries

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3