A novel control strategy for the multi-step straightening process of long/extra-long linear guideways

Author:

Zhang Yongquan1,Lu Hong1,Zhang Xinbao2ORCID,Ling He1,Fan Wei1,Wei Qinyu1,Lian Yang1

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract

The straightening process for a linear guideway with particular cross-section shape is normally conducted by the three-point pressure bending method. However, the single-step straightening process (SSSP) of a long/extra-long linear guideway may make the workpiece from a single-curvature curve into a more complex shape. Due to these limitations of SSSP, a quantitative control strategy for the multi-step straightening process (MSSP) of a long/extra-long linear guideway is proposed in this paper based on the straightening principle of SSSP. Firstly, the predictive models for straightening stroke and helix angle after unloading with respect to SSSP are developed based on the elasto-plastic theory and curvature integral model. Depending on the established analytical model for SSSP, the MSSP is then mathematically modelled to obtain corresponding straightening parameters considering feeding process, clamping process and straightening process. Besides, the finite element method has been applied to validate the developed mathematical model for the MSSP. Taking the approach of a linear guideway as an example, the experimental results have also shown that the proposed control strategy is appropriate for the MSSP of a long/extra-long linear guideway.

Funder

National Natural Science Foundation of China

Chinese Government Scholarship by the China Scholarship Council

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3