Three-dimensional simulation of red blood cell particle sedimentation

Author:

Zhou Huajie123ORCID,Chen Wenbo12ORCID,Xuan Chengliang12,Qin Zhangrong12,Wen Binghai12

Affiliation:

1. Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin, China

2. Department of Computer Science and Engineering, Guangxi Normal University, Guilin, China

3. Department of Electronic and Information Engineering, Guang’an Vocational and Technical College, Guang’an, China

Abstract

The red blood cell particle is important in the research studies of blood flow and drug delivery. The biconcave shape makes the motions of the red blood cell particle in fluids more complex than sphere or ellipsoid. Sedimentation behaviors of a red blood cell particle in long circular tubes are investigated by using the lattice Boltzmann method with the Galilean-invariant momentum exchange method. Different blockage ratios and the particle to fluid density ratios are considered. One periodic and two steady sedimentation modes are discovered. When the blockage ratio rises, the motion mode of particles changed from horizontal mode to inclined mode. With the increase of the particle to fluid density ratio, the sedimentation mode changed from the inclined mode to the horizontal mode, and the time of the particles reaching the stable state is obviously distinct in different sedimentation modes. Surprisingly, the oscillatory mode is observed in the larger blockage ratio and lower density ratio of particle to fluid. These works may be able to make active promotions to the research studies of blood circulation of humans.

Funder

National Natural Science Foundation of China

Key Project of Guangxi Natural Science Foundation

Guangxi Natural Science Foundation

Guangxi “Bagui Scholar” Teams for Innovation and Research Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inertial migration of rigid red blood cell particles in Poiseuille flow;Computers & Fluids;2023-06

2. The lattice Boltzmann method and its applications in engineering flows;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3