Design and locomotion analysis of a novel deformable mobile robot with two spatial reconfigurable platforms and three kinematic chains

Author:

Ding Wan1,Ruan Qiang1,Yao Yan-an1

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, P.R. China

Abstract

A novel five degrees of freedom deformable mobile robot composed of two spatial reconfigurable platforms and three revolute–prismatic–spherical kinematic chains acting in parallel to link the two platforms is proposed to realize large deformation capabilities and multiple locomotion modes. Each platform is an improved deployable single degrees of freedom three-plane-symmetric Bricard linkage. By taking advantage of locomotion collaborating among platforms and kinematic chains, the mobile robot can fold into stick-like shape and possess omnidirectional rolling and worm-like motions. The mechanism design, kinematics, and locomotion feasibility are the main focus. Through kinematics and gait planning, the robot is analyzed to have the capabilities of rolling and turning. Based on its deformation, the worm-like motion performs the ability to overcome narrow passages (such as pipes, holes, gaps, etc.) with large range of variable size. Dynamic simulations with detailed three-dimensional model are carried out to verify the gait planning and provide the variations of essential motion and dynamic parameters in each mode. An experimental robotic system with servo and pneumatic actuation systems is built, experiments are carried out to verify the validity of the theoretical analysis and the feasibility of the different locomotion functions, and its motion performances are compared and analyzed with collected data.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive decentralized fuzzy compensation control for large optical mirror processing systems;Industrial Robot: the international journal of robotics research and application;2024-01-09

2. Design and analysis of full-configuration decoupled actuating reconfigurable parallel spherical joint;Journal of Mechanical Science and Technology;2022-02

3. Reconfigurable/Foldable Overconstrained Mechanism and Its Application;Applied Sciences;2021-12-28

4. Optimization of Frame Structures with Kinematical Indeterminacy for Optimum Folding;Journal of Engineering Mechanics;2019-09

5. Focusing Device Based on Overconstrained Mechanism;IOP Conference Series: Materials Science and Engineering;2019-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3