Energy absorption capability of origami automobile bumper system

Author:

Yuan Lin12,Ma Jiayao12ORCID,You Zhong3

Affiliation:

1. Key Laboratory of Mechanism and Equipment Design of Ministry of Education, Tianjin, China

2. School of Mechanical Engineering, Tianjin University, Tianjin, China

3. Department of Engineering Science, University of Oxford, Oxford, UK

Abstract

The crashworthiness of an automobile bumper plays a vital role in overall vehicle safety. Energy absorption efficiency, as well as predictable and stable performance, are the most demanding features in the design of the bumper system. To this end, this paper presents a series of innovative bumper designs using built-in origami patterns. Also, we outline a numerical framework for evaluating the energy absorption performance of a bumper when subjected to an impact loading. Comparative analyses on full frontal and 40% offset frontal impact tests are conducted numerically for both low and high-speed scenarios. It is found that the designed failure modes are successfully triggered and followed during the collision process for the combined origami beam-origami crash box design. Most importantly, this optimal design could absorb 31.5% more energy than the conventional bumper.

Funder

Air Force Office of Scientific Research

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3