Mutually converted arc–line segment-based SLAM with summing parameters

Author:

Yan Rui-Jun1,Wu Jing1,Shao Ming-Lei2,Shin Kyoo-Sik3,Lee Ji-Yeong3,Han Chang-Soo3

Affiliation:

1. Department of Mechatronics Engineering, Hanyang University, Ansan-si, Republic of Korea

2. Department of Mechanical Engineering, Hanyang University, Ansan-si, Republic of Korea

3. Department of Robot Engineering, Hanyang University, Ansan-si, Republic of Korea

Abstract

This paper presents a mutually converted arc–line segment-based simultaneous localization and mapping (SLAM) algorithm by distinguishing what we call the summing parameters from other types. These redefined parameters are a combination of the coordinate values of the measuring points. Unlike most traditional features-based simultaneous localization and mapping algorithms that only update the same type of features with a covariance matrix, our algorithm can match and update different types of features, such as the arc and line. For each separated data set from every new scan, the necessary information of the measured points is stored by the small constant number of the summing parameters. The arc and line segments are extracted according to the different limit values but based on the same parameters, from which their covariance matrix can also be computed. If one stored segment matches a new extracted segment successfully, two segments can be merged as one whether the features are the same type or not. The mergence is achieved by only summing the corresponding summing parameters of the two segments. Three simultaneous localization and mapping experiments in three different indoor environments were done to demonstrate the robustness, accuracy, and effectiveness of the proposed method. The data set of the Massachusetts Institute Of Technology (MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL) Building was used to validate that our method has good adaptability.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QuicaBot: Quality Inspection and Assessment Robot;IEEE Transactions on Automation Science and Engineering;2019-04

2. Innovations in Infrastructure Service Robots;ROMANSY 21 - Robot Design, Dynamics and Control;2016

3. Representation of 3D Environment Map Using B-Spline Surface with Two Mutually Perpendicular LRFs;Mathematical Problems in Engineering;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3