An experimental and optimization of heat transfer between two-disk systems

Author:

Yadu Rakesh Kumar1,Singh Achhaibar1,Singh Dinesh Kumar1

Affiliation:

1. Netaji Subhas University of Technology, Delhi, India

Abstract

This research focuses on experimentally investigating and optimizing heat transfer between two parallel disks, a prevalent system extensively utilized in engineering devices and various machinery. Analyzing heat transfer in this configuration is of paramount interest to researchers and engineers. An experimental setup was built to explore heat transfer between two parallel disks. Local Nusselt number and average Nusselt number were calculated to analyze heat transfer characteristics. The study delved into the effects of vital parameters such as the gap ratio, Reynolds number, and heat flux on heat transfer between two parallel disks. The analysis revealed that the Nusselt number increases with an increase in the gap between two disks up to a certain level, beyond which an inverse effect is observed. Moreover, the Nusselt number demonstrates a positive correlation with the Reynolds number. An in-depth analysis of local and average Nusselt numbers indicated that heat flux initially has a positive effect, followed by an adverse effect after reaching a certain level. To ascertain the optimum solution, three different techniques were employed: Response Surface Method (RSM), Cuckoo Search Algorithm (CS), and Genetic Algorithm (GA). The predicted optimum values for the gap ratio, Reynolds number, and heat flux using GA, CS, and RSM were as follows: gap ratio (17.36, 17.36, and 17.36), Reynolds number (100, 100, and 98.2), and heat flux (689.36, 694.5, and 682.449), respectively. Correspondingly, the resulting average Nusselt numbers were projected to be 48.59, 48.36, and 48.5271. To validate the obtained results, experiments were conducted and compared with the predicted values. The comparison among these techniques indicated that all results fell within an acceptable margin of error. Specifically, RSM exhibited an error of 1.917%, CS showed an error of 0.962%, and GA displayed an error of 0.8931%.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3