Adaptive hybrid optimization of hydrodynamic deep drawing with radial pressure process by combination of parametric design and simulated annealing techniques

Author:

Hashemi Abbas1,Hoseinpour Gollo Mohammad1,Seyedkashi SM Hossein2,Pourkamali Anaraki Ali1

Affiliation:

1. Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Iran

2. Department of Mechanical Engineering, University of Birjand, Iran

Abstract

An adaptive hybrid simulated annealing technique with ANSYS parametric design language is developed to optimize hydrodynamic deep drawing assisted by radial pressure process. This work aims to determine an optimal pressure path by redefinition of simulated annealing parameters and creating an adaptive finite element code using ANSYS parametric design language for any cylindrical, conical, and conical–cylindrical cups. The simulated annealing algorithm is developed adaptively with respect to hydrodynamic deep drawing with radial pressure process to link with ANSYS parametric design language code using a script in MATLAB. Parametric definition of process parameters enables the optimization algorithm to change the finite element model configuration in each iteration. Defective product is detected by definition of two failure criteria based on thinning and wrinkling occurrence during the optimization process. The proposed optimization method is employed in fractional factorial design of experiment to investigate the effective parameters on final product quality. Also, a regression model is derived to predict the final product quality based on the maximum thinning percentage under the optimal pressure path. Reliability of the optimization procedure and regression model is validated by experiments.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on improvement of limit drawing ratio in two-stage hydrodynamic deep drawing of cylindrical cups;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2022-09-09

2. Punch-less and die-less sheet hydroforming process for manufacturing of serpentine-shaped micro-channels in ultra-thin sheets;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-17

3. Data-driven real-time control method for process equipment in flow shop towards product quality improvement;Procedia CIRP;2022

4. Task-level time-optimal collision avoidance trajectory planning for grinding manipulators;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3