Analysis of continuously variable transmission for flywheel energy storage systems in vehicular application

Author:

Dhand Aditya1,Pullen Keith1

Affiliation:

1. School of Engineering and Mathematical Sciences, City University London, London, UK

Abstract

Energy storage devices are an essential part of hybrid and electric vehicles. The most commonly used ones are batteries, ultra capacitors and high speed flywheels. Among these, the flywheel is the only device that keeps the energy stored in the same form as the moving vehicle, i.e. mechanical energy. In order to connect the flywheel with the vehicle drive line, a suitable means is needed which would allow the flywheel to vary its speed continuously, in other words a continuously variable transmission (CVT) is needed. To improve the efficiency and speed ratio range of the variators, a power spilt CVT (PSCVT) can be employed. This paper discusses the kinematics of PSCVT used to connect the flywheel to the driveline. A methodology describing the characteristic equations of speed ratio, power flow and efficiency of the PSCVT for various types including power recirculating and multi regime in both directions of power flow has been presented. An example of a PSCVT for a flywheel energy storage system (FESS) is computed using the derived equations and the results compared.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuel consumption of a wheel loader with power reflux hydraulic transmission system;Journal of Vibroengineering;2023-08-06

2. Robust EV Suspension Based on Compounded Motor Inerter Absorption;SAE Technical Paper Series;2023-05-08

3. Research on the centre distance separability of parallel shaft line gear pair;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-08-02

4. A review on long-term electrical power system modeling with energy storage;Journal of Cleaner Production;2021-01

5. Gear Trains and Planetary Gears;Springer Series in Solid and Structural Mechanics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3