Improvement of mechanical and tribological properties of centrifugally cast functionally graded copper for bearing applications

Author:

Radhika N1,Reghunath Rakesh1,Sam Manu1

Affiliation:

1. Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Abstract

The functionally graded Cu-11Ni-4Si/10wt%WC composite and its alloy have been synthesized using horizontal centrifugal casting technique to compare the mechanical and tribological improvement and its utility for bearings and bushes. Microstructure analysis and mechanical tests showed 43% improvement in hardness and 160% improvement in tensile strength at inner radial distances compared to the outer composite periphery. Fractural analysis showed ductility for alloy, whereas for composites, brittleness at outer and a combination of both ductility and brittleness were observed at inner. Proportional rise in the wear rate and coefficient of friction was observed with increasing load and sliding distances for both composite and alloy. Composite showed a slight decline in the wear rate and coefficient of friction with an increase in the sliding velocity, while alloy showed a linear rise. Worn surfaces analysis of composite showed the formation of oxide layers, which reduced the coefficient of friction at higher sliding velocity, resulting in lower wear rate.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3