High-entropy alloy reinforcement in aerospace-grade aluminum 7075: A study of yield strength and elastic modulus

Author:

Pandian Vasanthakumar1ORCID,Kannan Sekar1

Affiliation:

1. Materials Science and Technology Laboratory, Department of Mechanical Engineering, National Institute of Technology Calicut, Kerala, India

Abstract

This research aims to identify an appropriate theoretical model for assessing the yield strength and elastic modulus of a composite material consisting of aerospace-grade aluminum 7075 base matrix reinforced with nanocrystalline high-entropy alloy particle (HEAp) composed of CrCuFeMnNi. To fabricate the aluminum composite with a high-entropy alloy base, an innovative casting method was utilized. This method involved the use of a modified bottom-pouring stir casting furnace, integrated with a mechanical supersonic vibrator and a squeeze infiltration setup. The measured theoretical density was higher than the actual density, while the cast specimen exhibited porosity below 6.6%. Scanning electron microscopy (SEM) images revealed the presence of strengthening precipitates and a uniform dispersion of HEAp in the composite. Comparing the developed HEAp composites (CH2, CH3, and CH4) with the base AA7075 cast CH1 (AA7075 + 0 wt.% CrCuFeMnNi-HEAp), the ultimate tensile strength increased by 4% for CH2 (5 wt.% CrCuFeMnNi-HEAp), 21% for CH3 (10 wt.% CrCuFeMnNi-HEAp), and decreased by 9% for CH4 (15 wt.% CrCuFeMnNi-HEAp). Similarly, the yield strength increased by 10% for CH2, 24% for CH3, and decreased by 5% for CH4. The elongation showed an increasing trend of 5% for CH2, 12% for CH3, and 2% for CH4. The flexural strength of the HEAp composites (CH2, CH3, and CH4) increased by 2%, 5%, and 10%, respectively. The proposed model yielded similar yield strength values that closely aligned and were consistent with the experimental value within a deviation of 3.32%. The modified Halpin-Tsai models agreed with experimental value up to a reinforcement volume fraction of 4.89% when calculating the elastic modulus. The proposed model and the Hashin-Shtrikman upper bound also agreed on values up to a 3.32% reinforcement volume fraction.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3