An improved transmission efficiency prediction method for nonlinear characteristics of the cycloid reducer

Author:

Wang Xincheng1ORCID,Wang Huaming1ORCID,Li Luyang2,Hao Linbo1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. College of Mechanical Engineering, Yangzhou University, Yangzhou, China

Abstract

This study aims to accurately predict the nonlinear characteristics of transmission efficiency of cycloid reducers under different operating conditions. Firstly, equivalent modeling of the multi-source errors (MSEs) in the designed cycloid reducer is conducted. Force analysis algorithms considering MSEs are proposed for the cycloid drive mechanism, the output mechanism, and the bearings. Secondly, mathematical models are established for the load-dependent power losses, while an equivalent test is used for modeling load-independent power losses. Subsequently, an improved transmission efficiency prediction (TEP) method for cycloid reducers is proposed, which is then applied to the performance prediction of a prototype under different operating conditions. The advantages of the improved TEP method over the conventional method are discussed, and the influences of MSEs and load-independent power losses on the nonlinear characteristics of transmission efficiency are summarized. Finally, tests are conducted for the reducer prototype, and the test results are found to be in good agreement with the results obtained by the proposed TEP method. The main contribution of this study is to establish a solid algorithmic and modeling foundation for the optimal design of nonlinear transmission efficiency in cycloid reducers and provide reliable guidance for their engineering applications.

Funder

Key research and development project in Anhui Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3