Long-term exercise attenuates blood pressure responsiveness and modulates kidney angiotensin II signalling and urinary sodium excretion in SHR

Author:

Ciampone Silmara1,Borges Rafael1,de Lima Ize P1,Mesquita Flávia F1,Cambiucci Elizabeth C1,Gontijo José AR1

Affiliation:

1. Disciplina de Medicina Interna, Laboratório de Metabolismo Hidro-Salino, Núcleo de Medicina e Cirurgia Experimental, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-592 Campinas, São Paulo, Brazil.

Abstract

Observations have been made regarding the effects of long-term exercise training on blood pressure, renal sodium handling and renal renin–angiotensin–aldosterone (RAS) intracellular pathways in conscious, trained Okamoto–Aoki spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKy) normotensive rats, compared with appropriate age-matched sedentary SHR and WKy. To evaluate the influence of exercise training on renal function and RAS, receptors and intracellular angiotensin II (AngII) pathway compounds were used respectively, and lithium clearance and western blot methods were utilised. The current study demonstrated that increased blood pressure in SHR was blunted and significantly reduced by long-term swim training between the ages of 6 and 16 weeks. Additionally, the investigators observed an increased fractional urinary sodium excretion in trained SHR (SHRT) rats, compared with sedentary SHR (SHRS), despite a significantly decreased creatinine clearance (CCr). Furthermore, immunoblotting analysis demonstrated a decreased expression of AT1R in the entire kidney of TSHR rats, compared with SSHR. Conversely, the expression of the AT2R, in both sedentary and trained SHR, was unchanged. The present study may indicate that, in the kidney, long-term exercise exerts a modulating effect on AngII receptor expression. In fact, the present study indicates an association of increasing natriuresis, reciprocal changes in renal AngII receptors and intracellular pathway proteins with the fall in blood pressure levels observed in TSHR rats compared with age-matched SSHR rats.

Publisher

Hindawi Limited

Subject

Endocrinology,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3