Affiliation:
1. School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Caracas, Venezuela
2. School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Caracas, Venezuela,
Abstract
Introduction. Angiotensin II (AngII) regulates blood pressure and water and electrolyte metabolism through the stimulation of NAD(P)H oxidase and production of reactive oxygen species (ROS) such as O2—, which is metabolised by superoxide dismutase, catalase and glutathione peroxidase. We assessed the role of AT1 and AT2 receptors, NAD(P)H oxidase and protein kinase C (PKC) in Ang II-induced sodium and water excretion and their capacity to stimulate antioxidant enzymes in the rat hypothalamus, a brain structure known to express a high density of AngII receptors. Materials and methods. Male Sprague—Dawley rats were intracerebroventricularly (ICV) injected with AngII and urinary sodium and water excretion was assessed. Urine sodium concentration was determined using flame photometry. After decapitation the hypothalamus was microdissected under stereomicroscopic control. Superoxide dismutase, catalase and glutathione peroxidase activity were determined spectrophotometrically and extracellular signal-regulated kinase (ERK1/2) activation was analysed by Western blot. Results. AngII-ICV resulted in antidiuresis and natriuresis. ICV administration of losartan, PD123319, apocynin and chelerythrine blunted natriuresis. In hypothalamus, AngII increased catalase, superoxide dismutase and glutation peroxidase activity and ERK1/2 phosphorylation. These actions were prevented by losartan, apocynin and chelerythrine, and increased by PD123319. Conclusions. AT 1 and AT2 receptors, NAD(P)H oxidase and PKC pathway are involved in the regulation of hydromineral metabolism and antioxidant enzyme activity induced by AngII.
Subject
Endocrinology,Internal Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献