Decoding medical educators’ perceptions on generative artificial intelligence in medical education

Author:

Cervantes Jorge1,Smith Blake2,Ramadoss Tanya1,D’Amario Vanessa2,Shoja Mohammadali M.1,Rajput Vijay1

Affiliation:

1. Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA

2. Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA

Abstract

Generative AI (GenAI) is a disruptive technology likely to generate a major impact on faculty and learners in medical education. This work aims to measure the perception of GenAI among medical educators and to gain insights into its major advantages and concerns in medical education. A survey invitation was distributed to medical education faculty of colleges of allopathic and osteopathic medicine within a single university during the fall of 2023. The survey comprised 12 items, among those assessing the role of GenAI for students and educators, the need to modify teaching approaches, GenAI’s perceived advantages, applications of GenAI in the educational context, and the concerns, challenges, and trustworthiness associated with GenAI. Responses were obtained from 48 faculty. They showed a positive attitude toward GenAI and disagreed on GenAI having a very negative effect on either the students’ or faculty’s educational experience. Eighty-five percent of our medical schools’ faculty responded to had heard about GenAI, while 42% had not used it at all. Generating text (33%), automating repetitive tasks (19%), and creating multimedia content (17%) were some of the common utilizations of GenAI by school faculty. The majority agreed that GenAI is likely to change its role as an educator. A perceived advantage of GenAI in conducting more effective background research was reported by 54% of faculty. The greatest perceived strengths of GenAI were the ability to conduct more efficient research, task automation, and increased content accessibility. The faculty’s major concerns were cheating in home assignments in assessment (97%), tendency for blunder and false information (95%), lack of context (86%), and removal of human interaction in important feedback processes (83%). The majority of the faculty agrees on the lack of guidelines for safe use of GenAI from both a governmental and an institutional policy. The main perceived challenges were cheating, the tendency of GenAI to make errors, and privacy concerns. The faculty recognized the potential impact of GenAI in medical education. Careful deliberation of the pros and cons of GenAI is needed for its effective integration into medical education. There is general agreement that plagiarism and lack of regulations are two major areas of concern. Consensus-based guidelines at the institutional and/or national level need to start to be implemented to govern the appropriate use of GenAI while maintaining ethics and transparency. Faculty responses reflect an optimistic and favorable outlook on GenAI’s impact on student learning.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3