A new therapeutic perspective: Erastin inhibits tumor progression by driving ferroptosis in myelodysplastic syndromes

Author:

Li Jiaojiao1,Ma Junlan1,Zhang Rui2,Zhai Yan1,Zhang Wei1,Fu Rong1

Affiliation:

1. Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China

2. Tianjin Medical University, Tianjin, China

Abstract

Ferroptosis is a recently identified and evolutionarily conserved form of programmed cell death. This process is initiated by an imbalance in iron metabolism, leading to an overload of ferrous ions. These ions promote lipid peroxidation in the cell membrane through the Fenton reaction. As the cell’s antioxidant defenses become overwhelmed, a fatal buildup of reactive oxygen species (ROS) occurs, resulting in the rupture of the plasma membrane. Ferroptosis is implicated in conditions such as ischemia-reperfusion injuries and a range of cancers. In our research, we explored ferroptosis in myelodysplastic syndromes (MDS) by measuring iron levels, transferrin receptor expression, and glutathione peroxidase 4 (GPX4) mRNA. Our findings revealed that MDS patients had significantly higher Fe2+ levels in CD33+ cells and increased transferrin receptor mRNA compared to healthy individuals. GPX4 expression was also higher in MDS but not statistically significant. To investigate potential treatments for myeloid hematological diseases through ferroptosis induction, we treated the myelodysplastic syndrome cell line (SKM-1) and two myeloid leukemia cell lines (KG-1 and K562) with erastin, an iron transfer inducer. We observed that erastin treatment led to glutathione depletion, reduced GPX4 activity, and increased ROS, culminating in cell death by ferroptosis. Furthermore, combining erastin with azacitidine demonstrated a synergistic effect on MDS and leukemia cell lines, suggesting a promising approach for treating these hematological conditions with this drug combination. Our experiments confirm erastin’s ability to induce ferroptosis in MDS and highlight its potential synergistic use with azacitidine for treatment.

Funder

Tianjin Key Medical Discipline(Specialty) Construction Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3