Predictive modeling of mortality in carbapenem-resistant Acinetobacter baumannii bloodstream infections using machine learning

Author:

Özdede Murat12,Zarakolu Pınar3,Metan Gökhan34,Köseoğlu Eser Özgen5,Selimova Cemile1,Kızılkaya Canan6,Elmalı Ferhan7,Akova Murat3

Affiliation:

1. Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey

2. Hacettepe University Center for Genomics and Rare Diseases, Ankara, Turkey

3. Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey

4. Hacettepe University Hospital Infection Control Committee, Ankara, Turkey

5. Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey

6. bioMerieux SA, İstanbul, Turkey

7. Department of Biostatistics, Katip Çelebi University, Faculty of Medicine, İzmir, Turkey

Abstract

Acinetobacter baumannii, a notable drug-resistant bacterium, often induces severe infections in healthcare settings, prompting a deeper exploration of treatment alternatives due to escalating carbapenem resistance. This study meticulously examined clinical, microbiological, and molecular aspects related to in-hospital mortality in patients with carbapenem-resistant A. baumannii (CRAB) bloodstream infections (BSIs). From 292 isolates, 153 cases were scrutinized, reidentified through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and evaluated for antimicrobial susceptibility and carbapenemase genes via multiplex polymerase chain reaction (PCR). Utilizing supervised machine learning, the study constructed models to predict 14- and 30-day mortality rates, revealing the Naïve Bayes model’s superior specificity (0.75) and area under the curve (0.822) for 14-day mortality, and the Random Forest model’s impressive recall (0.85) for 30-day mortality. These models delineated eight and nine significant features for 14- and 30-day mortality predictions, respectively, with “septic shock” as a pivotal variable. Additional variables such as neutropenia with neutropenic days prior to sepsis, mechanical ventilator support, chronic kidney disease, and heart failure were also identified as ranking features. However, empirical antibiotic therapy appropriateness and specific microbiological data had minimal predictive efficacy. This research offers foundational data for assessing mortality risks associated with CRAB BSI and underscores the importance of stringent infection control practices in the wake of the scarcity of new effective antibiotics against resistant strains. The advanced models and insights generated in this study serve as significant resources for managing the repercussions of A. baumannii infections, contributing substantially to the clinical understanding and management of such infections in healthcare environments.

Funder

Scientific Research Project, Hacettepe University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3