Study on the microstructural variation and fatigue performance of microplasma arc welded thin 316L sheet

Author:

Saha Dipankar1,Pal Sukhomay1ORCID

Affiliation:

1. Department of Mechanical Engineering, IIT Guwahati, Guwahati, Assam, India

Abstract

Welding is a venerable and reliable fabricating technique to integrate materials into complex geometry desired for various industrial applications. However, localized heat concentration leading to microstructural variations can deteriorate the fatigue life of welded components. The present study explains tensile and high cycle fatigue performance of microplasma arc welded 316L SS thin sheet (0.5 mm thickness) material. The square butt joint configuration with a single pass weld was achieved for 316L SS similar sheet material. The skeletal and lathy delta-ferrite-austenitic structures were observed in the fusion zone (FZ) due to non-equilibrium solidification, which is attributed to the different thermal cycle behaviour of the FZ. This morphology is explained by the pseudo phase diagram and the Schaeffler diagram of SS material. The tensile test showed that the microplasma arc welding process achieved a joining efficiency of 93%. The high cycle fatigue performance of welded specimens was analysed at different alternating stress amplitude. The presence of a dense delta ferrite phase in the austenitic matrix is responsible for fatigue failure of the welded specimen. However, the development of deformation-induced martensite in the crack initiation site promotes fatigue life. The crack initiation, propagation, and sudden failure site were investigated to explain the fatigue fracture behaviour.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3