The effect of microstructure on the tensile and impact behaviour of short-glass fibre-reinforced polyamide 6.6 as assessed by micro-computed tomography

Author:

Rosic N.1,Mollo M.1,Bernal C.23,Cosmi F.4ORCID

Affiliation:

1. Centro de Investigaciones para la Industria Plástica, Instituto Nacional de Tecnología Industrial (INTI), San Martín, Argentina

2. Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires, Argentina

3. CONICET-Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires, Argentina

4. Department of Engineering and Architecture, University of Trieste, Trieste, Italy

Abstract

Injection moulding of short-fibre-reinforced thermoplastics opens a new dimension in the field of mass production of complicated net-shaped parts with accurate dimensions and the new challenge is to produce parts with tailored properties. However, the layered structure frequently observed in these composites strongly affects their mechanical behaviour and constitutes the main difficulty in transferring the results of tests performed on standard specimens to actual components and parts. In addition, to use injection-moulded composite materials safely, their mechanical behaviour under different loading conditions must be well understood. In the present work, the effect of microstructure, in terms of fibre length and orientation, on the tensile and impact behaviour of injection-moulded short-glass fibre-reinforced polyamide 6.6 was investigated. Digital reconstruction of the three-dimensional structure of samples, differently oriented with respect to the melt flow path, was obtained by the high-spatial-resolution non-destructive technique of synchrotron radiation micro-computed tomography (micro-CT). Automatic evaluation of the fibre length distribution was developed by a global method based on the mean fibre length distribution, computed from the star length distribution (SLD). The results of uniaxial tensile tests and Izod impact experiments were successfully correlated with morphological analysis of fractured surfaces and the results of SLD. These studies revealed important changes in fibre orientation distribution when the sample orientation is changed with respect to melt flow direction, which also strongly influenced the composite mechanical response.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3