Affiliation:
1. Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy
Abstract
To improve the structural efficiency and reduce costs, most additively manufactured parts are printed as thin shells filled with a lightweight cellular material. The filling material reacts to secondary stresses and provides distributed support for the load-carrying outer shell. In a recent publication, the authors have proposed a two-step method to design lightweight filling metamaterials that are intrinsically strong and stiff. Conceptually, the space is first divided into repetitive volumes according to known three-dimensional tessellation schemes. The tessellation is then replaced by a kinematically rigid wireframe with beams along the edges and across the faces of the native volumes. Elaborating on that idea, the present paper pursues three objectives: (a) show the variety of material designs that derive from the tessellation-wireframe approach; (b) characterize the materials through finite element analyses on full-scale models and compare them with former predictions based on scaling and homogenization techniques; (c) validate the numerical results against experimental tests on a selection of prototype structures. Good correlation is revealed between theoretical predictions, computational models, and experimental data.
Subject
Mechanical Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献