Enhancing tribo-mechanical and corrosion properties of A383 aluminum matrix composites through stir-cum-squeeze casting with marble dust and hexagonal boron nitride reinforcement

Author:

Murugadoss Palanivendhan1,Jeyaseelan Chandradass1ORCID

Affiliation:

1. Center for Automotive Materials, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India

Abstract

The A383 aluminum matrix composites (AMCs) are prominent automotive materials owing to their low-density yet high-strength nature. However, the conventional casting techniques, exorbitant price, and scarce supply of traditional ceramic reinforcements remain challenging. This research countermeasure the challenges by hybridizing the A383 with industrial marble dust (MD) and hexagonal boron nitride (hBN) through the stir-cum-squeeze casting technique. A constant proportion (4 wt%) of MD waste and varying proportions of hBN (1.5, 3, 4.5, and 6 wt%) were used to reinforce A383 alloy to improve its physio-mechanical characteristics. Stir-cum-squeeze casting enables homogenous dispersion of reinforcement particles within the matrix, resulting in improved interfacial bonding. Optimal results were achieved for A383 alloy reinforced with 4 wt% of MD and 6 wt% hBN, ensuring balanced tribo-mechanical characteristics against the as-casted A383. The hardness value increased by 40.8%, while the compression and tensile strength increased by 30.8% and 115.8%, respectively. Non-destructive testing confirms the effective reduction of porosity in the stir-cum-squeeze-cast composites. Moreover, the hybrid composites exhibit improved corrosion resistance by 32.18% after 72 h of testing. Additionally, the hybrid composites demonstrate a wear rate reduction of 54.35%.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3