Mechanical and tribological characterisation of AlCoCuFeNi HEA reinforced magnesium composites prepared via spark plasma sintering

Author:

Chen Jiqin1,Li Kewei1,Dong Peng1,Yang Xiao1,Han Mingzhu1,Hu Zhangyi1,Yan Zhifeng1,Zhang Hongxia1ORCID

Affiliation:

1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China

Abstract

In this paper, high-entropy alloy (HEA) particle-reinforced magnesium matrix composites were successfully prepared by the spark plasma sintering (SPS) technology. The effect of the addition of HEA particles on the microstructural evolution, compressive properties and wear properties was investigated. Given its weak binding with other HEA elements, Cu was the element that separated in the initial HEA-reinforced material and combined with Mg to produce CuMg2 dispersed in the matrix. The microhardness of the SPSed composite was 45.9% higher than that of the magnesium matrix. The SPSed composite with HEA particle content of 15 vol.% had the best compressive strength, and the ultimate compressive strength reached 269 MPa. With increased AlCoCuFeNi particles, the matrix could avoid fatigue wear, and the abrasive wear mechanism dominated.

Funder

Natural Science Foundation of Shanxi Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3